83 research outputs found

    Inhibitory activity of bovine lactoferrin against echovirus induced programmed cell death in vitro

    Get PDF
    Lactoferrin is a glycoprotein and plays an important role in defence against pathogens. Although the antiviral activity of lactoferrin is one of the major biological functions of such protein, the mechanism of action is still under debate. The effect of lactoferrin on echovirus 6 infection in vitro was analysed and results showed that (i) cells infected with echovirus 6, died as a result of apoptosis and that (ii) programmed cell death was inhibited by lactoferrin treatment. In this report, we demonstrate that lactoferrin can exert its anti-enteroviral activity by preventing viral-induced apoptosis. (C) 2005 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved

    Repositioned natural compounds and nanoformulations: a promising combination to counteract cell damage and inflammation in respiratory viral infections

    Get PDF
    Respiratory viral diseases are among the most important causes of disability, morbidity, and death worldwide. Due to the limited efficacy or side effects of many current therapies and the increase in antiviral-resistant viral strains, the need to find new compounds to counteract these infections is growing. Since the development of new drugs is a time-consuming and expensive process, numerous studies have focused on the reuse of commercially available compounds, such as natural molecules with therapeutic properties. This phenomenon is generally called drug repurposing or repositioning and represents a valid emerging strategy in the drug discovery field. Unfortunately, the use of natural compounds in therapy has some limitations, due to their poor kinetic performance and consequently reduced therapeutic effect. The advent of nanotechnology in biomedicine has allowed this limitation to be overcome, showing that natural compounds in nanoform may represent a promising strategy against respiratory viral infections. In this narrative review, the beneficial effects of some promising natural molecules, curcumin, resveratrol, quercetin, and vitamin C, which have been already studied both in native form and in nanoform, against respiratory viral infections are presented and discussed. The review focuses on the ability of these natural compounds, analyzed in in vitro and in vivo studies, to counteract inflammation and cellular damage induced by viral infection and provide scientific evidence of the benefits of nanoformulations in increasing the therapeutic potential of these molecules

    Involvement of bovine lactoferrin metal saturation, sialic acid and protein fragments in the inhibition of rotavirus infection

    Get PDF
    Although the antiviral activity of lactoferrin is one of the major biological functions of this iron binding protein, the mechanism of action is still under debate. We have investigated the role of metal binding, of sialic acid and of tryptic fragments of bovine lactoferrin (bLf) in the activity towards rotavirus (intestinal pathogen naked virus) infecting enterocyte-like cells. The antiviral activity of bLf fully saturated with manganese or zinc was slightly decreased compared to that observed for apo- or iron-saturated bLf. The antiviral activity of differently metal-saturated bLf towards rotavirus was exerted during and after the virus attachment step. The removal of sialic acid enhanced the anti-rotavirus activity of bLf. Among all the peptidic fragments obtained by tryptic digestion of bLf and characterised by advanced mass spectrometric methodologies, a large fragment (86-258) and a small peptide (324-329: YLTTLK) were able to inhibit rotavirus even if at lower extent than undigested bLf. © 2001 Elsevier Science B.V. All rights reserved

    The Shigella flexneri OmpA amino acid residues 188EVQ190 are essential for the interaction with the virulence factor PhoN2

    Get PDF
    Shigella flexneri is an intracellular pathogen that deploys an arsenal of virulence factors promoting host cell invasion, intracellular multiplication and intra- and inter-cellular dissemination. We have previously reported that the interaction between apyrase (PhoN2), a periplasmic ATP-diphosphohydrolase, and the C-terminal domain of the outer membrane (OM) protein OmpA is likely required for proper IcsA exposition at the old bacterial pole and thus for full virulence expression of Shigella flexneri (Scribano et al., 2014). OmpA, that is the major OM protein of Gram-negative bacteria, is a multifaceted protein that plays many different roles both in the OM structural integrity and in the virulence of several pathogens. Here, by using yeast two-hybrid technology and by constructing an in silico 3D model of OmpA from S. flexneri 5a strain M90T, we observed that the OmpA residues 188EVQ190 are likely essential for PhoN2-OmpA interaction. The 188EVQ190 amino acids are located within a flexible region of the OmpA protein that could represent a scaffold for protein-protein interaction

    In vitro antiviral and anti-inflammatory activities of N-Acetylglucosamine: development of an alternative and safe approach to fight viral respiratory infections

    Get PDF
    Viral respiratory tract infections (RTIs) are responsible for significant morbidity and mortality worldwide. A prominent feature of severe respiratory infections, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is the cytokine release syndrome. Therefore, there is an urgent need to develop different approaches both against viral replication and against the consequent inflammation. N-acetylglucosamine (GlcNAc), a glucosamine (GlcN) derivative, has been developed as an immunomodulatory and anti-inflammatory inexpensive and non-toxic drug for non-communicable disease treatment and/or prevention. Recent studies have suggested that GlcN, due to its anti-inflammatory activity, could be potentially useful for the control of respiratory virus infections. Our present study aimed to evaluate in two different immortalized cell lines whether GlcNAc could inhibit or reduce both viral infectivity and the inflammatory response to viral infection. Two different viruses, frequent cause of upper and lower respiratory tract infections, were used: the H1N1 Influenza A virus (IAV) (as model of enveloped RNA virus) and the Human adenovirus type 2 (Adv) (as model of naked DNA virus). Two forms of GlcNAc have been considered, bulk GlcNAc and GlcNAc in nanoform to overcome the possible pharmacokinetic limitations of GlcNAc. Our study suggests that GlcNAc restricts IAV replication but not Adv infection, whereas nano-GlcNAc inhibits both viruses. Moreover, GlcNAc and mainly its nanoformulation were able to reduce the pro-inflammatory cytokine secretion stimulated by viral infection. The correlation between inflammatory and infection inhibition is discussed

    Bacterial biofilm associated with a case of capsular contracture

    Get PDF
    Capsular contracture is one of the most common complications of implant-based breast augmentation. Despite its prevalence, the etiology of capsular contracture remains controversial although the surface texture of the breast implant, the anatomical position of the prosthesis and the presence of bacterial biofilm could be considered trigger factors. In fact, all medical implants are susceptible to bacterial colonization and biofilm formation. The present study demonstrated the presence of microbial biofilm constituted by cocci in a breast implant obtained from a patient with Baker grade II capsular contracture. This suggests that subclinical infection can be present and involved in low-grade capsular contracture

    Indicações da evolução da resistência ao carbapenem através da heteroresistência como estágio intermediário no Acinetobacter baumannii após administração de carbapenem

    Get PDF
    We describe an in vivo evolution of an antimicrobial profile from susceptibility to full-resistance to carbapenems, with heteroresistance as an intermediate stage, in an Acinetobacter baumannii strain. Heteroresistance was characterized by the growth of sub-populations within the susceptibility halo in both disk-diffusion and Etest. PCRs for the main A. baumannii carbapenemases were negative. The exact resistance mechanism, diagnostic methods and clinical relevance of heteroresistance in A. baumannii warrant further investigations. This is the first description of such phenomenon in vivo and the second report of heteroresistance to carbapenems in A. baumannii.Descrevemos a evolução in vivo, de um perfil de sensibilidade aos antimicrobianos, passando de sensibilidade a resistência total aos antibióticos carbapenêmicos, com um estágio intermediário de heteroresistência em isolado de Acinetobacter baumannii. A heteroresistência foi caracterizada pelo crescimento de sub-população na zona de inibição pelo método de disco-difusão e pelo Etest. PCRs para as principais carbapenemases envolvidas com resistência neste microrganismo foram negativas. O exato mecanismo de resistência envolvido, método diagnóstico e relevância clínica justificam investigação adicional. Esta é a primeira descrição deste fenômeno in vivo e o segundo relato de heteroresistência em A. baumannii

    Corynebacterium striatum infectando lesão cutânea maligna: a emergência de um patógeno oportunista

    Get PDF
    Descrevemos infecção de lesão neoplásica em paciente masculino de 27 anos, envolvendo pele e partes moles, causada por Corynebacterium striatum, um microrganismo raramente descrito como patógeno humano. A identificação foi confirmada por seqüenciamento de DNA. O paciente foi tratado com penicilina, com sucesso. O papel do C. striatum como patógeno oportunista é discutido.We described a case of a 27-year old male patient with skin and soft tissue infection of a neoplastic lesion caused by Corynebacterium striatum, an organism which has been rarely described as a human pathogen. Identification was confirmed by DNA sequencing. Successful treatment with penicillin was achieved. The role of the C. striatum as an emerging opportunistic pathogen is discussed

    Generation and characterization of a stable cell population releasing fluorescent HIV-1-based Virus Like Particles in an inducible way

    Get PDF
    BACKGROUND: The availability of cell lines releasing fluorescent viral particles can significantly support a variety of investigations, including the study of virus-cell interaction and the screening of antiviral compounds. Regarding HIV-1, the recovery of such biologic reagents represents a very hard challenge due to the intrinsic cytotoxicity of many HIV-1 products. We sought to overcome such a limitation by using a cell line releasing HIV-1 particles in an inducible way, and by exploiting the ability of a HIV-1 Nef mutant to be incorporated in virions at quite high levels. RESULTS: Here, we report the isolation and characterization of a HIV-1 packaging cell line, termed 18-4s, able to release valuable amounts of fluorescent HIV-1 based Virus-Like Particles (VLPs) in an inducible way. 18-4s cells were recovered by constitutively expressing the HIV-1 NefG3C mutant fused with the enhanced-green fluorescent protein (NefG3C-GFP) in a previously isolated inducible HIV-1 packaging cell line. The G3C mutation creates a palmitoylation site which results in NefG3C-GFP incorporation into virions greatly exceeding that of the wild type counterpart. Upon induction of 18-4s cells with ponasterone A and sodium butyrate, up to 4 μg/ml of VLPs, which had incorporated about 150 molecules of NefG3C-GFP per viral particle, were released into the culture supernatant. Due to their intrinsic strong fluorescence, the 18-4s VLPs were easily detectable by a novel cytofluorometric-based assay developed here. The treatment of target cells with fluorescent 18-4 VLPs pseudotyped with different glycoprotein receptors resulted in these becoming fluorescent as early as two hours post-challenge. CONCLUSION: We created a stable cell line releasing fluorescent HIV-1 based VLPs upon induction useful for several applications including the study of virus-cell interactions and the screening of antiviral compounds

    Malaria transmission through the mosquito requires the function of the OMD protein

    Get PDF
    Ookinetes, one of the motile and invasive forms of the malaria parasite, rely on gliding motility in order to establish an infection in the mosquito host. Here we characterize the protein PBANKA_0407300 which is conserved in the Plasmodium genus but lacks significant similarity to proteins of other eukaryotes. It is expressed in gametocytes and throughout the invasive mosquito stages of P. berghei, but is absent from asexual blood stages. Mutants lacking the protein developed morphologically normal ookinetes that were devoid of productive motility although some stretching movement could be detected. We therefore named the protein Ookinete Motility Deficient (OMD). Several key factors known to be involved in motility however were normally expressed and localized in the mutant. Importantly, the mutant failed to establish an infection in the mosquito which resulted in a total malaria transmission blockade
    • …
    corecore